Two distinct activity patterns of fast-spiking interneurons during neocortical UP states.
نویسندگان
چکیده
During sleep, neocortical neuronal networks oscillate slowly (<1 Hz) between periods of activity (UP states) and silence (DOWN states). UP states favor the interaction between thalamic-generated spindles (7-14 Hz) and cortically generated gamma (30-80 Hz) waves. We studied how these three nested oscillations modulate fast-spiking interneuron (FSi) activity in vivo in VGAT-Venus transgenic rats. Our data describe a population of FSi that discharge "early" within UP states and another population that discharge "late." Early FSi tended to be silent during epochs of desynchronization, whereas late FSi were active. We hypothesize that late FSi may be responsible for generating the gamma oscillations associated with cognitive processing during wakefulness. Remarkably, FSi populations were differently modulated by spindle and gamma rhythms. Early FSi were robustly coupled to spindles and always discharged earlier than late FSi within spindle and gamma cycles. The preferred firing phase during spindle and gamma waves was strongly correlated in each cell, suggesting a cross-frequency coupling between oscillations. Our results suggest a precise spatiotemporal pattern of FSi activity during UP states, whereby information rapidly flows between early and late cells, initially promoted by spindles and efficiently extended by local gamma oscillations.
منابع مشابه
Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability.
Little is known about the dynamics and mechanisms of transitions between tonic firing and bursting in cortical networks. Here, we use a computational model of a neocortical circuit with extracellular potassium dynamics to show that activity-dependent modulation of intrinsic excitability can lead to sustained oscillations with slow transitions between two distinct firing modes: fast run (tonic s...
متن کاملDevelopmental reduction of asynchronous GABA release from neocortical fast-spiking neurons.
Delayed asynchronous release (AR) evoked by bursts of presynaptic action potentials (APs) occurs in certain types of hippocampal and neocortical inhibitory interneurons. Previous studies showed that AR provides long-lasting inhibition and desynchronizes the activity in postsynaptic cells. However, whether AR undergoes developmental change remains unknown. In this study, we performed whole-cell ...
متن کاملDistinct Roles of SOM and VIP Interneurons during Cortical Up States
During cortical network activity, recurrent synaptic excitation among pyramidal neurons is approximately balanced by synaptic inhibition, which is provided by a vast diversity of inhibitory interneurons. The relative contributions of different interneuron subtypes to inhibitory tone during cortical network activity is not well-understood. We previously showed that many of the major interneuron ...
متن کاملNatural Waking and Sleep States: A View From Inside Neocortical Neurons
Steriade, M., I. Timofeev, and F. Grenier. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85: 1969–1985, 2001. In this first intracellular study of neocortical activities during waking and sleep states, we hypothesized that synaptic activities during natural states of vigilance have a decisive impact on the observed electrophysiological properties of neu...
متن کاملDifferential metabotropic glutamate receptor expression and modulation in two neocortical inhibitory networks.
Taking advantage of transgenic mice with genetically labeled GABA-releasing interneurons, we examined the cell-specific patterns of mGluR expression in two broadly defined subtypes of inhibitory interneurons in layer IV of somatosensory cortex. Electrophysiological recording combined with application of specific agonists for specific mGluRs demonstrated different effects of mGluR activation in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 24 شماره
صفحات -
تاریخ انتشار 2008